Good filtrations and F -purity of invariant subrings

نویسنده

  • Mitsuyasu Hashimoto
چکیده

Let k be an algebraically closed field of positive characteristic, G a reductive group over k, and V a finite dimensional G-module. Let B be a Borel subgroup of G, and U its unipotent radical. We prove that if S = SymV has a good filtration, then SU is F -pure. Throughout this paper, p denotes a prime number. Let k be an algebraically closed field of characteristic p, and G a reductive group over k. Let B be a Borel subgroup of G, and U its unipotent radical. We fix a maximal torus T contained in B, and fix a base of the root system Σ of G so that B is negative. For any weight λ ∈ X(T ), we denote the induced module indGB(λ) by ∇G(λ). We denote the set of dominant weights by X. For λ ∈ X, we call ∇G(λ) the dual Weyl module of highest weight λ. We say that a G-module W has a good filtration [1] if H(G,W ⊗ ∇G(λ)) = 0 for any λ ∈ X. Let V be a finite dimensional G-module, and S = SymV . The objective of this paper is to prove the following. Theorem 1. If S has a good filtration, then S is F -pure. 2010 Mathematics Subject Classification. Primary 13A50; Secondary 13A35.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Good Ltrations of Symmetric Algebras and Strong F -regularity of Invariant Subrings Dedicated to Professor Buchsbaum

In this paper, we prove that a linear action of a reductive group on a polynomial ring with good ltrations over a eld of characteristic p > 0 yields a strongly F-regular (in particular, Cohen-Macaulay) invariant subring. The strongly F-regular property of some known examples of invariant subrings, such as the coordinate rings of Schubert varieties in Grassmannians, are recovered. A similar resu...

متن کامل

Purity and Gorenstein Filtered Rings

In this paper, we discuss on the existence of filtrations of modules having good properties. In particular, we focus on filtered homomorphisms called strict, and show that there exists a filtration which makes a filtered homomorphism a strict filtered homomorphism. Moreover, by using this result, we study purity for filtered modules over a Gorenstein filtered ring.

متن کامل

Equivariant total ring of fractions and factoriality of rings generated by semiinvariants

Let F be an affine flat group scheme over a commutative ring R, and S an F -algebra (an R-algebra on which F acts). We define an equivariant analogue QF (S) of the total ring of fractions Q(S) of S. It is the largest F -algebra T such that S ⊂ T ⊂ Q(S), and S is an F -subalgebra of T . We study some basic properties. Utilizing this machinery, we give some new criteria for factoriality (UFD prop...

متن کامل

Gorensteinness of Invariant Subrings of Quantum Algebras

We prove Auslander-Gorenstein and GKdim-Macaulay properties for certain invariant subrings of some quantum algebras, the Weyl algebras, and the universal enveloping algebras of finite dimensional Lie algebras.

متن کامل

On Poincaré Series of Filtrations on Equivariant Functions of Two Variables

Let a finite group G act on the complex plane (C, 0). We consider multi-index filtrations on the spaces of germs of holomorphic functions of two variables equivariant with respect to 1-dimensional representations of the group G defined by components of the exceptional divisor of a modification of the complex plane C at the origin or by branches of a G-invariant plane curve singularity (C, 0) ⊂ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009